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Southern California Earthquake Center 
•  Collaboration of 600+ scientists at 60+ institutions 
•  SCEC conducts earthquake system science 

–  Many physical phenomena involved 
–  Community Modeling Environment (CME) improves

 computational models 
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Science Goals 
•  Dynamic ruptures 

–  Improve understanding of physics during ruptures 
–  Increase range of length scales 

•  Friction at millimeter scale to fault 100s of kilometers long 

–  Increase rupture description valid frequency from 2 to 10 Hz 

•  Wave propagation 
–  Validate earth structural model 
–  Simulate earthquakes at higher frequencies with improved 

rupture descriptions 
•  5 story -> 1 story buildings 

•  Probabilistic seismic hazard analysis (PSHA) 
–  Perform physics-based PSHA for all California 
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Validation 

•  SCEC community has multiple codebases 
•  Important to validate results across multiple codes 
•  Plan to continue cross-code validation on Mira 
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Peak ground velocities for a M7.8 San Andreas scenario with 3 independent codes 

Finite element (CMU) Finite difference (AWP-ODC) Finite difference (URS) 



Codes 

•  AWP-ODC 
–  Seismic wave propagation, dynamic planar ruptures 

•  SORD 
–  Wave propagation, dynamic ruptures 

•  Ma-FE 
–  Dynamic ruptures 

•  CyberShake 
–  Combines results of other codes for seismic hazard 
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AWP-ODC 

•  Wave propagation and dynamic rupture code 
–  Staggered-grid, finite difference 

•  Numerous optimizations 
–  Large input files (5+ TB) read 

contiguously by processor 
subset and distributed 

–  Asynchronous MPI 
communication 

–  Rank placement onto cores 
–  Single-core optimizations 

•  Cache blocking 
•  Loop unrolling 
•  Arithmetic optimization 
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Peak horizontal ground velocities from a M8 

scenario on the San Andreas Fault 



AWP-ODC Performance 

•  Run successfully on Jaguar, Intrepid, Ranger 
•  Scales well (superlinear) on 230K cores (5.6 million SUs) 
•  Adding support for scalable fault-tolerance 
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•  Eager to test on 
BG/Q hardware 
–  OpenMP/MPI 

version 
•  Supporting 

volume I/O is a 
challenge 
–  2 trillion mesh 

points in 2012 
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SORD 

•  Wave propagation and dynamic rupture code 
–  Hexahedral mesh (surface topography) 

•  Tested to 16k cores at TACC Ranger 
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•  Next 6 months 
–  Communication/ 

computation overlap 
–  Contiguous reading of 

input with redistribution 
(similar to AWP-ODC) 



Ma-FE 

•  Dynamic rupture code 
–  Finite element 
–  Hexahedral mesh 

(topography, non-planar 
faults) 

•  Can explore fault physics 
–  Complex, branching fault 

structures 
–  Friction laws 
–  Non-linear plastic yielding 
–  Rough fault surfaces 
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Final slip from dynamic rupture simulation of 
M7.7 on Sierra Madre/Cucamonga faults 



Ma-FE performance 

•  Recently implemented parallel versions 
–  72% efficiency from 16 to 16K cores on Ranger 
–  Load-balancing issues 

•  Next 6 months 
–  Parallel I/O 
–  Asynchronous communication 
–  Single-CPU optimizations 

•  Ultimately move to 2 trillion mesh point simulations 
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Seismic Hazard 

•  Determine probabilities of expected ground motion 
over time period 
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•  Useful for building codes, 
insurance rates 

•  Multiple inputs required 
–  3D structural model of earth 
–  Seismic wave propagation 
–  Descriptions of rupture slip 
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Hazard curve for downtown Los 
Angeles 



CyberShake 

•  Identify relevant earthquakes 
–  400,000 per site 

•  Wave propagation 
–  Relationship between fault 

motion and ground motion 

•  Determine shaking from 
each possible earthquake 

•  Use probabilities to 
determine site hazard 

•  Results for each site 
combined to determine 
regional hazard 
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Southern California 
15 million people 

Difference between physics-based CyberShake and 
empirically-based attenuation results for Southern 
California.  Red shows areas where CyberShake 

predicts higher hazard, blue lower. 

Los Angeles 



CyberShake 
•  Calculated 223 sites on up to 

15k cores on Ranger (5 
million SUs) 
–  Next is ~4000 sites for all-CA 

•  Next 6 months 
–  Use AWP-ODC to perform 

wave propagation 
•  Parallelism from 400 cores -> ? 
•  Increase frequency to 1 Hz 

–  Improve caching 

–  Use dynamic rupture results to 
generate improved rupture 
descriptions 
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Each dot represents a site to generate a CyberShake 
hazard curve for.  The black box represents the part of 
Southern California considered in the previous runs. 



Questions? 
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